SOLID-METAL THERMAL COLUMNS IN CONVENTIONAL PCBs

SMTA
Thermal Issues session
Rosemount, IL
9/24/03

Jim Fraivillig
Fraivillig Technologies
Boston, MA

PowerVia technology

Optimal through-hole thermal transfer

PowerVia technology

Optimal through-hole thermal transfer

PowerVia technology

Optimal through-hole thermal transfer

PowerVias for D2Paks

PowerVias inserted into PCB

Comparison with conventional thermal via

Conventional thermal via (drilled-and-plate)

PowerVia technology advantages

- High thermal transfer 2X conventional plated-thru hole
- No pressure dependency
- All polyimide durability

 Excellent electrical and physical properties

Design flexibility:

- Double-sided PCBs
- 'Snap-on' PCB to standard heat sink
- Optimize supply of both
 PCB and heat sink
- Testing flexibility (thermal mass of PowerVia)

SOLID-METAL THERMAL COLUMNS IN CONVENTIONAL PCBs

PowerVia installation

- 1. Insert into pre-routed PCB ('bottom side')
- 2. Solder on power devices ('top side')
- 3. Mount assembled PCB on heat sink

PowerVias can be:

- Press-fit
- PS-adhesive attached

Thermal transfer testing

Thermal resistance testing of D2Pak (R _{j-s}), using Anatech pulse tester:

- Conventional thermal via (plated-thru-hole + insulation pad + attachment hardware)
- Cylindrical column PowerVia
- Rectangular column PowerVia

Thermal resistance comparison 5

Control board with soldered-on D2Pak, bolted to heat sink

Thermal method	Active area	Rj-s
PowerVia (circular footprint)	0.08 => 0.20 sqin (Face-to-base)	4.4 °C/W
PowerVia (rectangular footprint)	0.20 => 0.30 sqin (Face-to-base)	2.7 °C/W
Thermal via + pad	0.30 sqin	11.4 °C/W

NOTE:

- Thermal resistance is junction-to-sink.
- Anatech measurement taken at steady-state.
- PCB secured to heat sink on PCB edges only (50-100 psi?).
- Thermal via + pad thermal resistance is about 7°C thru the power device+PCB and 4°C/W thru the insulation pad.

Pressure dependency

Conventional thermal vias require insulation pads...

...insulations pads require high-pressure to optimize thermal transfer to the heat sink.

PowerVias use non-isolating thermal grease or phase-change material...

....these thermal compounds have little pressure dependency (and very high thermal transfer).

PowerVia feature:

Excellent thermal management with conventional PCB packaging

- ➤ Better thermal transfer and lower cost than Kapton+PSA circuits
- ➤ Much lower cost than IMS circuits
- Denser packaging double-sided PCBs

PowerVia design feature:

Double-sided PCB, with flat-faced heat sink

PowerVia design feature:

Fully-assembled PCB, 'snapped' on to heat sink

(with no pressure dependency)

PowerVia design features:

Cool power devices on the PCB

=> Move to SMT from through-hole (with off-the-board cooling)

- Unified construction facilitates assembly and testing
- More compact designs (higher 'power density')
- Reduce system cost and SKUs

Conventional mounting (heat sink subassembly)

PowerVia design feature:

Fully-assembled PCB can be tested without a heat sink

PowerVias have 'thermal mass'

> R-value of 15-30°C/W (est.)

PowerVia design considerations:

> PCB thickness consistency

> PCB precision routing for PowerVia 'hole'

➤ Volume vs cost

PowerVia applications

FORMAT:

НОТ		COLD
Discrete SMT components	=>	Heat sink
Thermal via (plated-thru hole)	=>	Heat sink
Daughter PCB	=>	Mother PCB

END USE:

- Power supplies
- Automotive control modules
- Motion control
- Motor control